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ABSTRACT 

Miniature  rovers  with  articulated  mobility  mecha- 
nisms are  being  developed for  planetary  surface explo- 
ration  on  Mars  and  small  solar  system bodies. These 
vehicles are designed  to be capable of autonomous re- 
covery  from  overturning  during  surface  operations. 
This paper  describes  a  co.mputationa1  means of devel- 
oping  motion  behaviors  that  achieve  the  autonomous 
recovery  function.  It  proposes  a  control  softuare de- 
sign  approach  aimed  at  reducing  the  effort involved 
in  developing  self-righting  behaviors.  The approach 
is based on  the  integration  of  evolutionary  computing 
with a dynamics  simulation  environment  for  evolving 
and  evaluating  motion  behaviors.  The  automated be- 
havior  design  approach  is  outlined  and  its  underlying 
genetic  programming  infrastructure  is described. 

1 INTRODUCTION 

Advances in micro-technology and  mobile robotics 
have  enabled the development of extremely  compact 
and lightweight rovers for space  applications.  A  par- 
ticularly  promising  application  is the use of miniature 
rovers,  with a mass of tens or hundreds of grams, 
for planetary surface exploration. Such miniature 
robotic vehicles equipped  with  on-board science in- 
struments  have been proposed as possible  payloads 
on  landers used for missions to  Mars,  small bodies, or 
the moons of gas  giant  planets [l]. They have come 
to be known as nanorovers due  to  their  small size  rel- 
ative  to microrovers such as  Sojourner - the  Mars 
Pathfinder rover deployed on  Mars  in  July of 1997. 
Nanorovers  could  be used on flight  missions, as in- 
dividual  units or cooperative  teams:  to survey  areas 
around  a  lander, or even to  conduct long-range explo- 
ration involving  measurement of surface  mineralogic 
and  morphologic  properties. Research efforts are un- 
derway to develop  nanorovers that include  mobility, 
computation. power,  and communications in a pack- 
age of several  hundred grams in mass [l]. 'Thus far, 
a  functional  nanorover  prototype has  been developed 

that is capable of autonomous  mobility, science data  
gathering,  and  transmission of telemetry  to  an  oper- 
ator  control  station [2]. A flight version of the rover 
is currently  under  development  as a technology ex- 
periment on  an asteroid sample  return mission called 
MUSES-C. The MUSES-C flight  mission is being  im- 
plemented by Japan's  Institute of Space  and  Astro- 
nautical Science (ISAS)  and NASA [3][4]. In  addi- 
tion to  the flight  development  effort, the nanorover 
concept and design  are  being refined through ongo- 
ing  technology research efforts. The  aim is to develop 
miniature,  but scientifically capable, rovers that could 
easily fit within  the  projected  mass/volume reserves 
of future missions to  Mars and  small  planetary  bodies 
(asteroids and  comets). 

The  current nanorover prototype  features  a novel 
wheeled mobility  mechanism that allows it  to exe- 
cute  motions beyond  conventional  rolling  and turning. 
Its  articulated  mechanism of wheels on  posable-struts 
can be thought of as a hybrid wheeled-legged mobil- 
ity  system.  With  this  design,  the rover is capable 
of operating  with  its chassis upside  down, recovering 
from  accidental  overturning,  and even hopping  in very 
small  gravity fields. In  this  paper, we focus on the im- 
portant  mobility  control  feature of autonomous self- 
righting and present  an  approach to  automatic discov- 
ery/learning of associated  motior,  control  behaviors. 
We use the  term self-righting to refer to  the act of ma- 
neuvering the rover's articulated  mobility mechanism 
to effect recovery from  an  initial overturned state  to 
its  nominal  upright  driving  configuration. Due to  the 
wide range of possible motions  permitted by its mobill . 

ity mechanism, considerable time  and effort could be 
spent  designing  general  self-righting  motion sequences 
for the  nanorover. The problem is complicated further 
when resource limitations  (e.$. available power, time, 
etc) or certain flight constraints  must be considered 
in the solution. A control  software design approach is 
proposed that is aimed at reducing the effort involved 
in developing  self-righting  behaviors that  are sensi- 
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FIG. 1: Articulated nanorover prototype. 

tive to  on-board  resource limitations.  The  approach 
is based on the  integration of evolutionary  computing 
with a dynamics  simulation  environment for evolv- 
ing and  evaluating  suitable  motion  behaviors.  The 
automated  behavior design approach  is  outlined  and 
the software infrastructure necessary for implement- 
ing the  strategy is  described. 

2 NANOROVER MOBILITY 

The current  nanorover  prototype is illustrated in 
Fig. 1. The rover’s  mobility  mechanism is comprised 
of four wheels on  articulated  struts.  Each wheel and 
strut can  be  actuated  independently.  The  largest di- 
mension  (length) of the rover is 20 cm which makes 
it 30% the size of Sojourner.  Each  aluminum wheel 
contains  a  drive motor within,  and is cleated  with  a 
helical tread on the  outer surface to  enhance  traction 
and skid-steering  performance. In  addition  to basic 
functionality for forward/reverse  driving  and  turning, 
the  high-mobility  articulated  mechanism provides the 
rover with the  capability  to self-right,  as well as op- 
erate  with  its  body/chassis upside  down. This im- 
plies the ability to recover from  overturning,  and al- 
lows body pose control for preferential  pointing of 
on-board science instruments. Aside from  the rover’s 
apparent  miniature size, it is the capability to  self- 
right which distinguishes it from  many  other plane- 
tary rover designs. The  articulated chassis  enables 
robust  mobility necessary for surface  navigation  and 
exploration  in the  natural terrains of terrestrial  plan- 
ets. Moreover, its  capability  to recover from  acciden- 
tal  overturning  enhances  its  survivability as well as 
the likelihood of mission success. 

The rover has  an on-board computer  that  can 
be programmed to execute autonomous sequences of 
strut ,  body,  and wheel  motions, which cause the vehi- 
cle to self-right ( a s  well as perform  other useful behav- 
iors).  Its  suite of attitude sensors and  motor  actuators 
permits  simultaneous  coordinated  control of strut ar- 
ticulation  and  body pose. As indicated in  Fig. 1, the 
four struts  can  rotate in two directions  about  a com- 

FIG. 2: Posable-strut  and  chassis  configurations. 

mon pivot axis  (y-axis  in  the  figure), however, struts 
on  either  side  cannot  rotate  past  one  another.  In  ad- 
dition  to  strut  rotations,  the  body  can be actuated 
to pitch  about  the  same  axis.  These  rotations consti- 
tute  the  articulation degrees offreedom On ( n  = 1-5); 
the wheel motions provide  four  rolling degrees of free- 
dom.  Strut angles are  measured by potentiometers; 
wheel rotational  displacements  are  measured by en- 
coders. The flight rover design  includes  sensors at  
each wheel for detecting  proximity to,  and  contact 
with,  the  ground.  It also includes a sun sensor for 
detecting  body  orientation  relative to  the  sun. A va- 
riety of pose configurations that are possible with  this 
mechanism is shown  in  Fig. 2.  

Due to  the flexibility of the mobility  mechanism 
and chassis, a number of feasible motion sequences 
can be  executed that result in successful self-righting 
of the rover from  an  initially  overturned  state. One 
possible sequence  is illustrated in  Fig. 3, in which the 
motion progresses from (a)-(f). From  the  initial over- 
turned  state in (a)l  the rover actuates  its  struts to- 
wards  the terrain  until  its wheels make  contact,  (b). 
The  same  strut  motion  continues  until t,he configu- 
ration in (d) is  achieved.  At this  point,  the body 
is actuated  to  its  nominal  upright  configuration, (e)- 
(f) .  A single fixed sequence such as this is inadequate 
as a general self-righting solution. While effective on 
relatively  flat terrain,  it  may  fail if attempted from 
other possible initial  configurations. A more  general 
solution calls for  an  algorithm or set of control rules 
that assesses the  initial  overturned configuration via 
sensory  perception,  and  produces  expedient  actuator 
controls. For completeness, the behavior  should be 
able  to  prescribe  control  responses for the  range of 
possible sensor stimuli.  This  can be achieved effi- 
ciently  with  behavior  control  rules that accept inputs 
that are partitioned  into  intervals, or even fuzzy sets 
[SI. 



FIG. 3: Example self-righting  sequence. 

2.1 PRACTICAL ISSUES 

Some of the  motion sequences that  can be exe- 
cuted  with  the  posable-strut  mechanism  are more fa- 
vorable than others  with regard to  the  total number 
of motions necessary (and therefore,  power  required), 
and the required  execution  time. Nanorovers used 
for flight  missions  rely  on  solar  energy as their  pri- 
mary  electrical power source. The flight nanorover 
is designed to have most sides of its chassis popu- 
lated by solar  panels, with the  primary solar  panel 
located  on  the  nominal  top  side.  This design ensures 
that sufficient power will always  be  available for  ac- 
tuation of motors needed to self-right. The maxi- 
mum size of the  primary solar  panel  for  these rovers 
is limited  by  the  small  footprint of the vehicles. As 
such,  nanorovers  must  operate  within  the  constraint 
of relatively low power  budgets. Sufficient available 
on-board  power for mobility  actuators, science instru- 
ments,  and  communications is of primary concern for 
nanorovers. Designs for  self-righting and other mo- 
tion  behaviors  must be sensitive to on-board power 
constraints.  Some of the most  intuitive solutions 
(such  as that  in Fig. 3) may  not sufficiently account 
for realistic  on-board  resource  limitations. Therefore, 
it behooves the rover control  engineer to explore the 
space of feasible solutions for behaviors that would 
minimize power consumption  and  comply with  other 
operational  constraints or flight rules.  Execution time 
required  for  self-righting is also of concern since the 
frequency of unintentional  overturning  may be signifi- 
cant for nanorovers  operating in certain environments 
and  terrain-types.  The  cumulative  time  spent recov- 
ering from  frequent  overturning could easily detract 
from  time  allotted for science data  gathering and nav- 
igation  goals. An additional concern  for nanorovers 
is the  negative  impact  that  dusty  environments can 
have on solar  panel efficiency. Due to their low pro- 
file relative to  the  terrain,  dust could accumulate over 
time on the rovers' solar  panels. The problem is only 
compounded each time the rover overturns.  This is- 
sue is currently being  addressed by a  dust  mitigation 
approach  planned  for  the flight rover, which is based 

the use of an electronic dust  rejection  apparatus. 
As an  alternative  to  the  tedious effort of examin- 

ing  all of the possible  motion  sequences, an  automatic 
computational  method of self-righting  behavior  de- 
sign is, proposed in  the following section. The goal 
and  expected  result of the  approach is the discovery 
of one or more  viable  self-righting  behaviors that can 
be used as is,  or as a starting  point for further refine- 
ment.  The  advantage is a  savings  in  time  and effort 
that would  otherwise  be  spent  searching  the  space of 
possible motion sequences. The  approach is based 
on  an  application of evolutionary  algorithms, which 
have  proven  useful for problems  involving  search and 
optimization. 

3 SELF-RIGHTING EVOLUTION 
In  this  section, we outline  an  approach  to artificial 

evolution of self-righting  behaviors.  More specifically, 
we propose  genetic  programming  for off-line learning 
of self-righting  behaviors  for  nanorovers. A genetic 
programming (GP) system [6] computationally sim- 
ulates the Darwinian  evolution  process by applying 
fitness-based  selection  and  genetic operators  to  a pop- 
ulation of candidate  solutions, which are  represented 
as computer  programs or subroutines.  The  main dis- 
tinction  between  genetic  programming  and genetic al- 
gorithms is that  the former adapts hierarchical sym- 
bolic data  structures  (e.g.  computer  programs), while 
the  latter  adapts  linear  numerical data  structures (e.g. 
bit  strings or arrays of integers  or  reals). For our 
purposes,  the  computational  structures undergoing 
adaptation  are  sets of condition-action  rules of dy- 
namically  varying size and  structure.  That  is,  the 
population  consists of behavioral  rule  sets, each rep- 
resented as a  tree  data  structure, of different num- 
bers of rules. Tree  nodes,  or genes, may consist of 
components of a generic if-then  rule  construct and 
common logic connectives (e.g. A N D ,  OR, and NOT), as 
well as input/output variables and  parameters associ- 
ated  with  the  problem. Each set of rules  constitutes a 
motion  behavior  that  maps  articulation,  orientation, 
and wheel-contact sensor values into  strut and  body 
motions. 

The objective of the GP system is to create  a  pop- 
ulation of candidate self-righting  behaviors,  evaluate 
behaviors  via  dynamics  simulation,  and improve thd ' 

population  through artificial  evolution  until  one or 
more  highly fit solutions is discovered. All behavioral 
rule  sets in the  initial  population  are  randomly cre- 
ated  from  syntactically valid combinations of genes. 
Descendant  populations  are  created by genetic  oper- 
ators - primarily  reproduction  and crossover. For 
the  reproduction  operation, several  behaviors  selected 
based on  superior  fitness  are copied from  the  current 



population  into  the  next,  i.e.  the new generation. 
The crossover operation  starts  with two parental rule 
sets  and  produces two offspring that  are  added  to  the 
new generation. This operation  selects a random por- 
tion of each parer,tal  tree  structure  and  swaps  them 
(while maintaining valid syntax)  to produce the two 
offspring. GP cycles through the current  population 
evaluating the fitness of each behavior  based on  its 
performance  in  computer  simulations of the control 
system.  After a numerical  fitness is determined for 
each behavior, the genetic operators  are  applied  to 
the  fittest  behaviors  to  create a new population.  This 
cycle repeats  on a generation by generation  basis un- 
til  satisfaction of termination  criteria  (e.g. discovery 
of a highly fit  behavior, lack of improvement,  max- 
imum  generation reached, etc). At termination,  the 
GP result  is the best-fit self-righting  behavior that 
appeared  in  any  generation. The  dynamic variabil- 
ity of the  symbolic  representation allows for  rule  sets 
of various  sizes. This enhances  population  diversity, 
which is important for the success of an  evolutionary 
computing  system. 

The overall  process is summarized as illustrated in 
Fig. 4. Candidate self-righting  behaviors in  the popu- 
lation evolve in response to selective  pressure  induced 
by their  relative  fitnesses for implementing the desired 
motion  behavior.  This  population-based  approach 
is particularly  suitable for global search and opti- 
mization  in  large  and/or  multi-modal  search spaces. 
The key distinction between such  evolutionary  search 
methods  and a conventional  gradient  descent  based 
approach  is that,  in  the  former, multiple  points in 
the search space  are  sampled  in  parallel. The ap- 
proach has  been verified through  numerous  exam- 
ples reported  in the  literature.  In  the definitive GP 
text [6], Koza  has applied  genetic programming  to 
evolve computer  programs  that solve a number of in- 
teresting  control  problems. The  same techniques have 
been successfully applied to search and  optimization 
of robot  manipulator  trajectories [’i], mobile  robot 
control  and  navigation behaviors [8], and collective 
behaviors  for multi-robot  systems [9]. Each  imple- 
mentation differs in various problem-dependent ways. 
However, for robotic  system  applications: a common 
characteristic is the formulation of a fitness measure 
that drives the evolution  and is coupled to a motion 
simulation.  The viability of evolved behaviors is a 
function of the  thoroughness of the  evaluation pro- 
cess. Performance is based solely on  evaluation of 
behavioral  responses  predicted by the  simulator, and 
is computed by a user-prescribed fitness function. As 
such,  the success of’ the  approach  depends  in large 
part on the  fitness function  employed  and the fidelity 
of the  simulation  environment. Each of these  integral 

FIG. 4: Behavior  evolution  architecture. 

aspects  is  discussed  further below. 

3.1 BEHAVIOR  EVALUATION 
In  order to  apply  evolutionary  algorithms  for be- 

havior evolution, a meaure  of behavior  fitness  must 
be formulated  to drive the process. It is important 
that  the fitness  function map observable parameters 
of the  problem  into  a  spectrum of values that differen- 
tiate  the  performance of behaviors  in the  population. 
If the  spectrum of fitness values is not  sufficiently  rich, 
the fitness function  may  not provide  enough  informa- 
tion  to  guide GP toward  regions of the  search  space 
where improved  solutions  might  be  found. For prob- 
lems  involving  simulation of controlled  behavior, a va- 
riety of performance attributes  can  be considered for 
inclusion in  the fitness measure.  Examples  include  a 
maximum  number of time  steps, explicit  error  toler- 
ances, terminating physical  events  such as task suc- 
cess or failure,  and  penalties/rewards  thereof.  In gen- 
eral, selected  performance  attributes  can  be weighted 
to emphasize  their  relative  importance  in  the search 
for candidate  solutions. The fitness function is anal- 
ogous to  the performance  measure of optimal  control 
theory, or more generally, the objective  function of 
optimization  theory. 

One approach  to  evaluating evolving candidate 
self-righting  behaviors is to  test  them  against a num- 
ber of fitness  cases,  tabulate a performance score for 
each case,  and average the scores to  determine  an 
overall fitness  value. The  initial  postures for  each  fit- 
ness case should be chosen to  represent an overturned 
configuration that can  occur in the  target environ- 
ment.  The  number of fitness cases should  be chosen 
such that they  represent the search  space sufficiently 
to allow the evolved strategy  to generalize  (i.e.  handle 
unforeseen initial  conditions).  Fig.  3a is one  example 
of a  fitness  case for the self-righting problem. A few 
additional  examples  are  illustrated in Fig. 5. For each 
fitness case the goal is the  same - recovery from  an 
initial  overturned  state  to achieve the  nominal  upright 



FIG. 5: Example fitness  cases. 

driving  configuration. 
We propose  a  self-righting  fitness  score based pri- 

marily on the  estimated power consumed by motors 
( p ) ,  the  time elapsed during execution ( t ) ,  and  the 
percentage of progress made (IC, 5 100). Each of these 
performance  attributes is measured at  the end of each 
fitness  case. It is possible, however, to formulate the 
fitness evaluation  such  that  performance is measured 
during fitness  case  execution. This was  done in [9] 
where a  reinforcement  learning  function was coupled 
with  fitness evaluation  to  install  a progress  indica- 
tion  during fitness trials. Power consumption  can be 
estimated  from knowledge of the  motor  performance 
characteristics  and usage during  execution.  Elapsed 
time is determined  based on simulation ticks starting 
from  the  beginning of the self-righting  maneuver to  
the end of the  trial.  The  amount of progress made 
is indicated by the percentage of angular displace- 
ment achieved by the chassis  from the  initial  posture 
towards the desired  nominal  driving  configuration. 
With these so defined,  an  example fitness score for 
a trial  run  through fitness case IC can  be  formulated 
as 

The overall fitness of a candidate self-righting  Sehav- 
ior would be  computed by averaging the scores over 
the  total  number of fitness cases defined. 'This exam- 
ple fitness formulation rewards  behaviors that consis- 
tently  achieve (or come close to)  the desired upright 
configuration  in a timely  manner, while minimizing 
power consumption. 

3.2 DYxmIcs  SIMULATION 
A  simulation  environment is a key component of 

the  approach  described above. This is particularly 
true for evolution of rover behavior(s). One of the 
challenges of evolutionary  robotics is the successful 
evolution of robust  controllers  in simulation. It was 
pointed out in [lo] that  the use of simulation  en- 
vironments of questionable fidelity tend  to  result  in 
evolved behaviors that are  not easily transferable to  
real robots. However,  for  developing rover systems 
designed to  operate in  unknown  space  environments, 
evolution  in simulation is often the  most  practical  op- 
tion.  Behaviors evolved in simulations  must, however, 

be validated  and verified to  some  extent on real  rovers. 
The use of rover and  environment  simulators of rea- 
sonably  high  fidelity can  mitigate such concerns. Pre- 
existing simulators  are  particularly useful in stream- 
lining rover  control  and  navigation  software  develop- 
ment efforts  when  prototype/flight  hardware  is  un- 
available or inaccessible. 

A high-fidelity dynamics  simulation  system is  avail- 
able a t   JPL for  use in  this work. It is based on  the 
JPL-developed DARTS/DSHELL [11] simulation  tools. 
DARTS/DSHELL is a multi-mission  spacecraft simula- 
tor  with a real-time  computational engine for flexible 
multi-body  dynamics.  It includes  libraries of hard- 
ware models  for  various  sensors,  actuators,  and  mo- 
tors.  Its  simulation  infrastructure allows for interfaces 
to  a 3D animation viewer and rover research/flight 
software. The interface  between rover software and 
the  simulator  enables  software  to issue control  up- 
dates to  the  simulator  and receive state/sensor data  
from the  simulator.  The  computational engine com- 
putes dynamics of multi-body  systems based on  iner- 
tial  properties of the bodies  in  the  system  and forces 
applied to  those  bodies.  In  this  dynamics  simulation 
system, the nanorover  is  modeled as a  multi-body  sys- 
tem of wheels, struts,  and a chassis. Different fric- 
tion models  can be created to  simulate  characteristics 
of wheel-terrain interactions,  and  the  gravitational 
acceleration can  be varied as well. Currently, the 
DARTS/DSHELL  spacecraft  simulation tools are be- 
ing leveraged to  develop a related  software simulation 
toolkit that  is more  germane  to rovers [12]. These sys- 
tems  provides suitable  environments for rover/terrain 
modeling and  simulation  that  are useful for flight  soft- 
ware design and  development. When  integrated  with 
a genetic programming  system, as described above, 
high-fidelity simulators provide a fitness evaluation 
medium  for  artificial  evolution of rover behaviors. 

4 ISSUES FOR SMALL BODIES 
The  approach as described  thus  far is nominally 

focused on  the  basic discovery of self-righting behav- 
iors that  might  be feasible on  Earth  and  Mars. The 
importance of a self-righting  capability is magnified 
in the  case of surface  exploration on small  bodies  like 
asteroids.  In this  case,  the  gravitational fields are 
substantially weaker than those of Earth or Mars, and . 

the likelihood of unintentional overturning is substan- 
tially  higher. Before the proposed approach can  be 
applied to evolve effective behaviors for small-body 
exploration,  additional considerations  must  be  fac- 
tored into  the  dynamics  simulation. Most notable 
among  these  are appropriate  gravitational effects and 
terrain  characteristics. 

When accurate  data  about small bodies of interest 



are  unknown,  assumptions  about  gravity  and  terrain 
characteristics  must be made.  In a recent  preliminary 
study [13], the mobility  performance of a nanorover 
operating  within a small-body  gravity field was exam- 
ined using a commercial  dynamics  simulation software 
package. In that  study,  assumptions were made  about 
the  environment of the  near-Earth  asteroid Nereus 
(4660),  the  primary  target of the MUSES-C flight 
mission,  which  is less than one  kilometer  in  diam- 
eter.  The  surface  gravity of Nereus is expected to 
be 8-8Opg [4]. In [13], 20pg  was assumed. The  aim 
of this  small-body  mobility  study was to predict the 
rover’s ability  to  maintain  adequate  tractive forces 
with  the  ground surface to achieve forward progress. 
Two  wheel-terrain  interaction  models were consid- 
ered. The first was based solely on  Coulomb friction 
(with  a  friction coefficient of 0.5); the second was a 
combination of Coulomb  friction  and adhesive forces 
(thought  to  arise  due  to  electrostatic  attractions be- 
tween the wheels and a dusty  surface).  To  computa- 
tionally evolve self-righting  behaviors  for such envi- 
ronments, the  simulator used for  behavior  evaluation 
must be capable of representing  different  gravity fields 
and  terrain  types.  The  dynamics  simulator mentioned 
above offers this flexibility. 

Until additional  facts  are  learned  about Nereus, 
data presented  in [4] and  assumptions  made in [13] 
will be  used as  a baseline  for our  computational 
behavior  evolution  experiments. For the upcoming 
flight mission,  relevant new findings will be factored 
into  the  design of control  and  navigation behaviors for 
mobility  on the  target  asteroid.  The various  desirable 
attributes of viable evolved behaviors will be  identi- 
fied for possible  realization  on the flight rover. This 
activity will be  supported by high-fidelity  computer 
simulations  as well as  hardware-based low-gravity 
simulations that focus on  evaluating  behaviors in the 
context of relevant  mission  scenarios  and  constraints. 

5 SUMMARY AND CONCLUSIONS 
Nanorovers with  articulated  mobility mechanisms 

are  capable of a variety of maneuvers besides conven- 
tional  rolling and  turning.  This  paper  has focused 
on the  problem of autonomous self-righting  and  has 
expressed some of the  practical  aspects of the prob- 
lem. An automated software  design  approach  has 
been proposed  for  developing rover control  behaviors 
for self-righting.  Genetic  programming is advocated 
as a means  for offline learning  using a high-fidelity 
dynamics  simulation of the rover and  environment. 
The proposed approach  can be used to synthesize self- 
righting  behaviors  and  optimize  them based  on per- 
formance  feedback  from the  simulator, which can be 
interfaced  with prototype rover control  software. The 

integrated  system would be beneficial for streamlin- 
ing rover software design and  development efforts. In 
addition  to self-righting  behaviors, the approach  can 
be applied to  develop  other  functionalities for which 
solutions  are  not  already well-defined. The interested 
reader can find  source  code  for  implementing GP  in 
the LISP programming  language in [6]. Public do- 
main  implementations  that  are  written in  C or C++ 
are also available  on  the  World  Wide  Web. 

The technology  described in  this  paper is part of an 
ongoing  effort to evaluate  the  utility of very low mass, 
scientifically capable rovers for h4ars and  small  body 
exploration. Technological advances  towards  robust 
and  survivable nanorovers will permit mobility-based 
science surveys  on  planetary surfaces  with  a small 
fraction of the science payload  expected for currently 
planned,  and  future, rover missions. 
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